ICP-MS直接进样测定复方醋酸钠电解质注射液及其原料药中的杂质元素

引言

复方醋酸钠电解质注射液的主要组份为氯化钠、葡萄糖、醋酸钠、氯化钾和氯化镁，含适量的用以调节PH值的氢氧化钠，它与血液和血液制品相容，临床上通常作为水、电解质的补充源和碱化剂，可使用同一给药装置在输血前或输血后输注（即作为预充液），亦可加入正在输注的血液成分中，或作为血细胞的稀释液。生理盐水（0.67%-0.9%氯化钠水溶液）中氯离子含量远高于人体正常血浆中的含量（98–106mmol/L），如果在进行液体复苏过程中使用大量的生理食盐水，其高浓度氯离子将导致高氯性代谢性酸中毒，损害患者健康；复方醋酸钠电解质中氯离子的含量与人体正常血浆中的含量接近，对患者更为有益。因此，复方醋酸钠电解质注射液在临床医疗上有着广泛的应用。在复方醋酸钠电解质注射液制造过程中，从原料、用水、生产、储存、运输等各个环节都可能将某些对人体有害作用的杂质元素引入，所以包括中国药典在内的世界各国药典均对注射液中的杂质离子的含量及其检测方法都有着严格的规定。

电感耦合等离子体质谱（ICP-MS）在元素分析中具有灵敏、快速、多元素同时检测等优势，但在常规的测试条件下，Ar、H、O、N等会与样品基体中的Ca、Cl等结合形成多原子离子，干扰待测元素，而且注射液中含有较高的有机质和盐分，引起较严重的基体抑制效应。珀金埃尔默NexION系列 ICP-MS 拥有大锥孔的紧密锥形设计配合平板等离子体技术，显著提升仪器的基体耐受性，并配合碰撞反应池技术消除多原子离子干扰，无需稀释和消解注射液样品，即可直接进样准确测定复方醋酸钠电解质中的杂质元素含量。
实验部分

样品前处理

- 复方醋酸钠电解质注射液：取复方醋酸钠电解质注射液样品9.8mL，加入0.2 mL硝酸（UP纯度）酸化。
- 原料样品：准确称取原料1g，用2%稀硝酸（UP纯度）稀释100倍（完全溶解后的样品溶液为澄清透明）。

仪器条件

参数条件设置见表1，测试元素质量数设置见表2。

表1 ICP-MS参数条件设置

<table>
<thead>
<tr>
<th>参数</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>雾化器</td>
<td>玻璃同心雾化器</td>
</tr>
<tr>
<td>雾室</td>
<td>玻璃旋流雾室</td>
</tr>
<tr>
<td>锥</td>
<td>镍锥</td>
</tr>
<tr>
<td>等离子气流量</td>
<td>18 L/min</td>
</tr>
<tr>
<td>辅助气流量</td>
<td>1.2 L/min</td>
</tr>
<tr>
<td>雾化气流量</td>
<td>0.98 L/min</td>
</tr>
<tr>
<td>样品提升速率</td>
<td>300 µL/min</td>
</tr>
<tr>
<td>RF功率</td>
<td>1600 W</td>
</tr>
<tr>
<td>积分时间</td>
<td>1 s</td>
</tr>
<tr>
<td>重复测定次数</td>
<td>3</td>
</tr>
<tr>
<td>通用池模式</td>
<td>碰撞模式</td>
</tr>
</tbody>
</table>

表2 测试元素质量数设置

<table>
<thead>
<tr>
<th>元素</th>
<th>质量数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>7</td>
</tr>
<tr>
<td>V</td>
<td>51</td>
</tr>
<tr>
<td>Co</td>
<td>59</td>
</tr>
<tr>
<td>Ni</td>
<td>60</td>
</tr>
<tr>
<td>Cu</td>
<td>63</td>
</tr>
<tr>
<td>As</td>
<td>75</td>
</tr>
<tr>
<td>Cd</td>
<td>111</td>
</tr>
<tr>
<td>Sb</td>
<td>121</td>
</tr>
<tr>
<td>Hg</td>
<td>202</td>
</tr>
<tr>
<td>Pb</td>
<td>208</td>
</tr>
</tbody>
</table>

校准曲线

使用单元素标准溶液（中国有色金属研究院监制）和2%硝酸配制浓度不同的系列被测元素混合标准溶液，用2%硝酸稀释。为了确保Hg元素的稳定性，添加最终浓度为200µg/L的Au元素到溶液中。各元素样本范围表3所示。

结果与讨论

方法检出限和定量限

测定11次试剂空白溶液，以3倍的标准偏差所对应的质量浓度为仪器检出限，以10倍的标准偏差为方法定量下限，结果见表4。

方法稳定性

取6个不同批次的样品，每个批次取两个样品，计算各被测元素测定值的相对标准偏差（RSD）验证测试方法稳定性，结果见表5。
结论
珀金埃尔默 NexION 系列 ICP-MS 可以测试经过简单处理后的高基体注射剂样品，测试结果表明仪器和方法有着优异的检出限、稳定性和回收率。NexION 系列 ICP-MS 为多四级杆系统，其功能体现在碰撞池的简易性和便利性，以及优异的反应池检测限值等方面。使用获得专利的通用池技术（UCT）为特定的应用选择最合适的碰撞或反应池技术。在NexION ICP-MS 的三锥接口（TCI）、四极杆离子偏转器（QID）技术和全基体进样系统（AMS）的帮助下，降低偏差、减少接口区域的污染和将日常维护和清洁降至最低，可以提高生产率和操作便利性。

方法准确度
取其中任一样品进行加标测试，加标量为曲线中间点，验证回收率，结果见表6。

<table>
<thead>
<tr>
<th>样品</th>
<th>Li(ppb)</th>
<th>V(ppb)</th>
<th>Co(ppb)</th>
<th>Ni(ppb)</th>
<th>Cu(ppb)</th>
<th>As(ppb)</th>
<th>Cd(ppb)</th>
<th>Sb(ppb)</th>
<th>Hg(ppb)</th>
<th>Pb(ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品A-1</td>
<td>34.37</td>
<td>0.58</td>
<td>0.05</td>
<td>0.40</td>
<td>1.96</td>
<td>0.17</td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>样品A-2</td>
<td>33.18</td>
<td>0.56</td>
<td>0.05</td>
<td>0.37</td>
<td>2.20</td>
<td>0.15</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>RSD</td>
<td>0.88%</td>
<td>0.61%</td>
<td>0.55%</td>
<td>1.88%</td>
<td>2.94%</td>
<td>2.47%</td>
<td>0.40%</td>
<td>4.61%</td>
<td>5.00%</td>
<td>0.69%</td>
</tr>
<tr>
<td>样品B-1</td>
<td>28.79</td>
<td>0.52</td>
<td>0.06</td>
<td>0.40</td>
<td>2.34</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>样品B-2</td>
<td>29.68</td>
<td>0.52</td>
<td>0.06</td>
<td>0.37</td>
<td>2.38</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>RSD</td>
<td>0.76%</td>
<td>0.01%</td>
<td>1.53%</td>
<td>1.53%</td>
<td>0.38%</td>
<td>0.49%</td>
<td>0.40%</td>
<td>0.83%</td>
<td>0.62%</td>
<td>2.47%</td>
</tr>
<tr>
<td>样品C-1</td>
<td>33.56</td>
<td>0.48</td>
<td>0.06</td>
<td>0.49</td>
<td>2.37</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>样品C-2</td>
<td>33.08</td>
<td>0.49</td>
<td>0.07</td>
<td>0.48</td>
<td>2.30</td>
<td>0.15</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>RSD</td>
<td>0.36%</td>
<td>0.34%</td>
<td>2.08%</td>
<td>0.57%</td>
<td>0.83%</td>
<td>1.59%</td>
<td>0.37%</td>
<td>2.98%</td>
<td>4.73%</td>
<td>0.07%</td>
</tr>
<tr>
<td>样品D-1</td>
<td>33.34</td>
<td>0.56</td>
<td>0.06</td>
<td>0.35</td>
<td>2.26</td>
<td>0.15</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>样品D-2</td>
<td>33.30</td>
<td>0.57</td>
<td>0.06</td>
<td>0.38</td>
<td>2.26</td>
<td>0.15</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>RSD</td>
<td>0.03%</td>
<td>0.63%</td>
<td>0.41%</td>
<td>1.91%</td>
<td>0.04%</td>
<td>0.47%</td>
<td>0.45%</td>
<td>3.69%</td>
<td>0.96%</td>
<td>0.66%</td>
</tr>
<tr>
<td>样品E-1</td>
<td>29.76</td>
<td>0.55</td>
<td>0.06</td>
<td>0.37</td>
<td>2.21</td>
<td>0.14</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>样品E-2</td>
<td>29.99</td>
<td>0.56</td>
<td>0.06</td>
<td>0.38</td>
<td>2.22</td>
<td>0.15</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>RSD</td>
<td>0.20%</td>
<td>0.45%</td>
<td>2.03%</td>
<td>0.86%</td>
<td>0.02%</td>
<td>1.85%</td>
<td>2.07%</td>
<td>1.62%</td>
<td>0.54%</td>
<td>0.18%</td>
</tr>
<tr>
<td>样品F-1</td>
<td>34.74</td>
<td>0.51</td>
<td>0.07</td>
<td>0.50</td>
<td>2.16</td>
<td>0.15</td>
<td>0.03</td>
<td>0.06</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>样品F-2</td>
<td>33.88</td>
<td>0.50</td>
<td>0.06</td>
<td>0.50</td>
<td>2.05</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>RSD</td>
<td>0.62%</td>
<td>0.46%</td>
<td>1.69%</td>
<td>0.19%</td>
<td>1.30%</td>
<td>2.02%</td>
<td>0.87%</td>
<td>8.08%</td>
<td>5.06%</td>
<td>1.33%</td>
</tr>
</tbody>
</table>

结论
珀金埃尔默 NexION 系列 ICP-MS 可以测试经过简单处理后的高基体注射剂样品，测试结果表明仪器和方法有着优异的检出限、稳定性和回收率。NexION 系列 ICP-MS 为多四级杆系统，其功能体现在碰撞池的简易性和便利性，以及优异的反应池检测限值等方面。使用获得专利的通用池技术（UCT）为特定的应用选择最合适的碰撞或反应池技术。在NexION ICP-MS 的三锥接口（TCI）、四极杆离子偏转器（QID）技术和全基体进样系统（AMS）的帮助下，降低偏差、减少接口区域的污染和将日常维护和清洁降至最低，可以提高生产率和操作便利性。